C++基础

时间:2019-12-06作者:klpeng分类:IT综合浏览:120评论:0

基础

一、特性

C++ 完全支持面向对象的程序设计,包括面向对象开发的四大特性:

  • 封装
  • 抽象
  • 继承
  • 多态

二、标准库

标准的 C++ 由三个重要部分组成:

  • 核心语言,提供了所有构件块,包括变量、数据类型和常量,等等。
  • C++ 标准库,提供了大量的函数,用于操作文件、字符串等。
  • 标准模板库(STL),提供了大量的方法,用于操作数据结构等。

三、语法

C++ 基本语法
  • 对象
  • 方法
  • 即时变量
三字符组

三字符组就是用于表示另一个字符的三个字符序列,又称为三字符序列。三字符序列总是以两个问号开头。

三字符序列不太常见,但 C++ 标准允许把某些字符指定为三字符序列。以前为了表示键盘上没有的字符,这是必不可少的一种方法。

四、C++ 数据类型

基本的内置类型
  • 布尔型 bool

  • 字符型 char

  • 整型 int

  • 浮点型 float

  • 双浮点型 double

  • 无类型 void

  • 宽字符型 wchar_t

一些基本类型可以使用一个或多个类型修饰符进行修饰:

  • signed

  • unsigned

  • short

  • long

typedef 声明

可以使用 typedef 为一个已有的类型取一个新的名字。下面是使用 typedef 定义一个新类型的语法:

typedef type newname;

枚举类型

枚举类型(enumeration)是C++中的一种派生数据类型,它是由用户定义的若干枚举常量的集合。

如果一个变量只有几种可能的值,可以定义为枚举(enumeration)类型。所谓"枚举"是指将变量的值一一列举出来,变量的值只能在列举出来的值的范围内。

创建枚举,需要使用关键字 enum。枚举类型的一般形式为:


enum 枚举名{ 
     标识符[=整型常数], 
     标识符[=整型常数], 
... 
    标识符[=整型常数]
} 枚举变量;


五、C++ 变量类型

C++ 中的变量定义

变量定义就是告诉编译器在何处创建变量的存储,以及如何创建变量的存储。变量定义指定一个数据类型,并包含了该类型的一个或多个变量的列表,如下所示:

type variable_list;

type 必须是一个有效的 C++ 数据类型

C++ 中的变量声明

变量声明向编译器保证变量以给定的类型和名称存在,这样编译器在不需要知道变量完整细节的情
况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变
量声明。

C++ 修饰符类型

C++ 允许在 char、int 和 double 数据类型前放置修饰符。修饰符用于改变基本类型的含义,所以它更能满足各种情境的需求。

下面列出了数据类型修饰符:

  • signed

  • unsigned

  • long

  • short

六、C++ 存储类

存储类定义 C++ 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C++ 程序中可用的存储类:

  • auto

  • register

  • static

  • extern

  • mutable

  • thread_local (C++11)

从 C++ 11 开始,auto 关键字不再是 C++ 存储类说明符,且 register 关键字被弃用。

extern 存储类

extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 ‘extern’ 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。

thread_local 存储类

使用 thread_local 说明符声明的变量仅可在它在其上创建的线程上访问。 变量在创建线程时创建,并在销毁线程时销毁。 每个线程都有其自己的变量副本。
thread_local 说明符可以与 static 或 extern 合并。
可以将 thread_local 仅应用于数据声明和定义,thread_local 不能用于函数声明或定义。

七、C++ 循环

循环类型

C++ 编程语言提供了以下几种循环类型。

循环类型 描述
while 循环 当给定条件为真时,重复语句或语句组。它会在执行循环主体之前测试条件
for 循环 多次执行一个语句序列,简化管理循环变量的代码
do…while 循环 除了它是在循环主体结尾测试条件外,其他与 while 语句类似
嵌套循环 可以在 while、for 或 do…while 循环内使用一个或多个循环
循环控制语句

循环控制语句更改执行的正常序列。当执行离开一个范围时,所有在该范围中创建的自动对象都会被销毁。

C++ 提供了下列的控制语句。

循环类型 描述
break 语句 终止 loop 或 switch 语句,程序流将继续执行紧接着 loop 或 switch 的下一条语句。
continue 语句 引起循环跳过主体的剩余部分,立即重新开始测试条件。
goto 语句 将控制转移到被标记的语句。但是不建议在程序中使用 goto 语句。

八、C++ 函数

函数是一组一起执行一个任务的语句。每个 C++ 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。
您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常是根据每个函数执行一个特定的任务来进行的。
函数声明告诉编译器函数的名称、返回类型和参数。函数定义提供了函数的实际主体。
C++ 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。
函数还有很多叫法,比如方法、子例程或程序,等等。

在 C++ 中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:

  • 返回类型:一个函数可以返回一个值。return_type 是函数返回的值的数据类型。有些函数执行所需的操作而不返回值,在这种情况下,return_type 是关键字 void。
  • 函数名称:这是函数的实际名称。函数名和参数列表一起构成了函数签名。
  • 参数:参数就像是占位符。当函数被调用时,您向参数传递一个值,这个值被称为实际参数。参数列表包括函数参数的类型、顺序、数量。参数是可选的,也就是说,函数可能不包含参数。
  • 函数主体:函数主体包含一组定义函数执行任务的语句。
函数参数

如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有两种向函数传递参数的方式:

调用类型 描述
传值调用 该方法把参数的实际值复制给函数的形式参数。在这种情况下,修改函数内的形式参数对实际参数没有影响。
指针调用 该方法把参数的地址复制给形式参数。在函数内,该地址用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。
引用调用 该方法把参数的引用复制给形式参数。在函数内,该引用用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。
Lambda 函数与表达式

C++11 提供了对匿名函数的支持,称为 Lambda 函数(也叫 Lambda 表达式)。
Lambda 表达式把函数看作对象。Lambda 表达式可以像对象一样使用,比如可以将它们赋给变量和作为参数传递,还可以像函数一样对其求值。

九、C++ 数组

C++ 数组

C++ 支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。

数组的声明并不是声明一个个单独的变量,比如 number0、number1、…、number99,而是声明一个数组变量,比如 numbers,然后使用 numbers[0]、numbers[1]、…、numbers[99] 来代表一个个单独的变量。数组中的特定元素可以通过索引访问。

所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素

声明数组

在 C++ 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:

type arrayName [ arraySize ];

初始化数组

在 C++ 中,可以逐个初始化数组,也可以使用一个初始化语句,如下所示:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。
如果省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:
balance[4] = 50.0;

上述的语句把数组中第五个元素的值赋为 50.0。所有的数组都是以 0 作为它们第一个元素的索引,也被称为基索引,数组的最后一个索引是数组的总大小减去 1。以下是上面所讨论的数组的的图形表示:

访问数组元素

数组元素可以通过数组名称加索引进行访问。元素的索引是放在方括号内,跟在数组名称的后边。例如:

double salary = balance[9];

C++ 中数组详解
概念 描述
多维数组 C++ 支持多维数组。多维数组最简单的形式是二维数组。
指向数组的指针 可以通过指定不带索引的数组名称来生成一个指向数组中第一个元素的指针。
传递数组给函数 可以通过指定不带索引的数组名称来给函数传递一个指向数组的指针。
从函数返回数组 C++ 允许从函数返回数组。

十、C++ 字符串

C++ 提供了以下两种类型的字符串表示形式:

  • C 风格字符串
  • C++ 引入的 string 类类型
C 风格字符串

C 风格的字符串起源于 C 语言,并在 C++ 中继续得到支持。字符串实际上是使用 null 字符 ‘\0’ 终止的一维字符数组。因此,一个以 null 结尾的字符串,包含了组成字符串的字符。

下面的声明和初始化创建了一个 “Hello” 字符串。由于在数组的末尾存储了空字符,所以字符数组的大小比单词 “Hello” 的字符数多一个。

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

依据数组初始化规则,可以把上面的语句写成以下语句:

char greeting[] = "Hello";

以下是 C/C++ 中定义的字符串的内存表示:

C++ 中有大量的函数用来操作以 null 结尾的字符串:supports a wide range of functions that manipulate null-terminated strings:

序号 函数 & 目的
1 strcpy(s1, s2);复制字符串 s2 到字符串 s1。
2 strcat(s1, s2);连接字符串 s2 到字符串 s1 的末尾。
3 strlen(s1);返回字符串 s1 的长度。
4 strcmp(s1, s2);如果 s1 和 s2 是相同的,则返回 0;如果 s1<s2 则返回值小于 0;如果 s1>s2 则返回值大于 0。
5 strchr(s1, ch);返回一个指针,指向字符串 s1 中字符 ch 的第一次出现的位置。
6 strstr(s1, s2);返回一个指针,指向字符串 s1 中字符串 s2 的第一次出现的位置。
C++ 中的 String 类

C++ 标准库提供了 string 类类型,支持上述所有的操作,另外还增加了其他更多的功能。


#include <iostream>
#include <string>
 
using namespace std;
 
int main ()
{
   string str1 = "Hello";
   string str2 = "World";
   string str3;
   int  len ;
 
   // 复制 str1 到 str3
   str3 = str1;
   cout << "str3 : " << str3 << endl;
 
   // 连接 str1 和 str2
   str3 = str1 + str2;
   cout << "str1 + str2 : " << str3 << endl;
 
   // 连接后,str3 的总长度
   len = str3.size();
   cout << "str3.size() :  " << len << endl;
 
   return 0;
}

结果:

十一、C++ 指针

通过指针,可以简化一些 C++ 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。

每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址

什么是指针?

指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。就像其他变量或常量一样,必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:

type *var-name;

在这里,type 是指针的基类型,它必须是一个有效的 C++ 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

int    *ip;    /* 一个整型的指针 */
double *dp;    /* 一个 double 型的指针 */
float  *fp;    /* 一个浮点型的指针 */
char   *ch;    /* 一个字符型的指针 */

所有指针的值的实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,都是一样的,都是一个代表内存地址的长的十六进制数。不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。

C++ 中使用指针

使用指针时会频繁进行以下几个操作:

  • 定义一个指针变量、
  • 把变量地址赋值给指针、
  • 访问指针变量中可用地址的值。

这些是通过使用一元运算符 * 来返回位于操作数所指定地址的变量的值


#include <iostream>

using namespace std;

int main ()
{
    int  var = 20;   // 实际变量的声明
    int  *ip;        // 指针变量的声明

    ip = &var;       // 在指针变量中存储 var 的地址

    cout << "变量值: ";
    cout << var << endl;

    // 输出在指针变量中存储的地址
    cout << "变量地址 ";
    cout << ip << endl;

    // 访问指针中地址的值
    cout << "指针中地址的值: ";
    cout << *ip << endl;

    return 0;
}

C++ 指针详解

在 C++ 中,有很多指针相关的概念,这些概念都很简单,但是都很重要.

概念 描述
C++ Null 指针 C++ 支持空指针。NULL 指针是一个定义在标准库中的值为零的常量。
C++ 指针的算术运算 可以对指针进行四种算术运算:++、–、+、-
C++ 指针 vs 数组 指针和数组之间有着密切的关系。
C++ 指针数组 可以定义用来存储指针的数组。
C++ 指向指针的指针 C++ 允许指向指针的指针。
C++ 传递指针给函数 通过引用或地址传递参数,使传递的参数在调用函数中被改变。
C++ 从函数返回指针 C++ 允许函数返回指针到局部变量、静态变量和动态内存分配。

十二、C++ 引用

引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。

C++ 引用 vs 指针

引用很容易与指针混淆,它们之间有三个主要的不同:

  • 不存在空引用。引用必须连接到一块合法的内存。
  • 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
  • 引用必须在创建时被初始化。指针可以在任何时间被初始化。
C++ 中创建引用

变量名称是变量附属在内存位置中的标签,可以把引用当成是变量附属在内存位置中的第二个标签。因此可以通过原始变量名称或引用来访问变量的内容

引用通常用于函数参数列表和函数返回值。引用相关的重要概念:

概念 描述
把引用作为参数 C++ 支持把引用作为参数传给函数,这比传一般的参数更安全。
把引用作为返回值 可以从 C++ 函数中返回引用,就像返回其他数据类型一样。

十三、C++ 日期 & 时间

C++ 标准库没有提供所谓的日期类型。C++ 继承了 C 语言用于日期和时间操作的结构和函数。为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 头文件。

有四个与时间相关的类型:clock_t、time_t、size_t 和 tm。类型 clock_t、size_t 和 time_t 能够把系统时间和日期表示为某种整数。

结构类型 tm 把日期和时间以 C 结构的形式保存,tm 结构的定义如下:

struct tm {
  int tm_sec;   // 秒,正常范围从 0 到 59,但允许至 61
  int tm_min;   // 分,范围从 0 到 59
  int tm_hour;  // 小时,范围从 0 到 23
  int tm_mday;  // 一月中的第几天,范围从 1 到 31
  int tm_mon;   // 月,范围从 0 到 11
  int tm_year;  // 自 1900 年起的年数
  int tm_wday;  // 一周中的第几天,范围从 0 到 6,从星期日算起
  int tm_yday;  // 一年中的第几天,范围从 0 到 365,从 1 月 1 日算起
  int tm_isdst; // 夏令时
}

下面是 C/C++ 中关于日期和时间的重要函数。所有这些函数都是 C/C++ 标准库的组成部分

序号 函数 & 描述
1 time_t time(time_t *time);该函数返回系统的当前日历时间,自 1970 年 1 月 1 日以来经过的秒数。如果系统没有时间,则返回 .1。
2 char *ctime(const time_t *time);该返回一个表示当地时间的字符串指针,字符串形式 day month year hours:minutes:seconds year\n\0。
3 struct tm *localtime(const time_t *time);该函数返回一个指向表示本地时间的 tm 结构的指针。
4 clock_t clock(void);该函数返回程序执行起(一般为程序的开头),处理器时钟所使用的时间。如果时间不可用,则返回 .1。
5 char * asctime ( const struct tm * time );该函数返回一个指向字符串的指针,字符串包含了 time 所指向结构中存储的信息,返回形式为:day month date hours:minutes:seconds year\n\0。
6 struct tm *gmtime(const time_t *time);该函数返回一个指向 time 的指针,time 为 tm 结构,用协调世界时(UTC)也被称为格林尼治标准时间(GMT)表示。
7 time_t mktime(struct tm *time);该函数返回日历时间,相当于 time 所指向结构中存储的时间。
8 double difftime ( time_t time2, time_t time1 );该函数返回 time1 和 time2 之间相差的秒数。
9 size_t strftime();该函数可用于格式化日期和时间为指定的格式。
当前日期和时间

#include <iostream>
#include <ctime>
 
using namespace std;
 
int main( )
{
   // 基于当前系统的当前日期/时间
   time_t now = time(0);
   
   // 把 now 转换为字符串形式
   char* dt = ctime(&now);
 
   cout << "本地日期和时间:" << dt << endl;
 
   // 把 now 转换为 tm 结构
   tm *gmtm = gmtime(&now);
   dt = asctime(gmtm);
   cout << "UTC 日期和时间:"<< dt << endl;
}

使用结构 tm 格式化时间

tm 结构在 C/C++ 中处理日期和时间相关的操作时,显得尤为重要。tm 结构以 C 结构的形式保存日期和时间。大多数与时间相关的函数都使用了 tm 结构。下面的实例使用了 tm 结构和各种与日期和时间相关的函数。


#include <iostream>
#include <ctime>
 
using namespace std;
 
int main( )
{
   // 基于当前系统的当前日期/时间
   time_t now = time(0);
 
   cout << "1970 到目前经过秒数:" << now << endl;
 
   tm *ltm = localtime(&now);
 
   // 输出 tm 结构的各个组成部分
   cout << "年: "<< 1900 + ltm->tm_year << endl;
   cout << "月: "<< 1 + ltm->tm_mon<< endl;
   cout << "日: "<<  ltm->tm_mday << endl;
   cout << "时间: "<< ltm->tm_hour << ":";
   cout << ltm->tm_min << ":";
   cout << ltm->tm_sec << endl;
}

十四、C++ 基本的输入输出

C++ 的 I/O 发生在流中,流是字节序列。如果字节流是从设备(如键盘、磁盘驱动器、网络连接等)流向内存,这叫做输入操作。如果字节流是从内存流向设备(如显示屏、打印机、磁盘驱动器、网络连接等),这叫做输出操作。

I/O 库头文件
头文件 函数和描述
<iostream> 该文件定义了 cin、cout、cerr 和 clog 对象,分别对应于标准输入流、标准输出流、非缓冲标准错误流和缓冲标准错误流。
<iomanip> 该文件通过所谓的参数化的流操纵器(比如 setw 和 setprecision),来声明对执行标准化 I/O 有用的服务。
<fstream> 该文件为用户控制的文件处理声明服务。我们将在文件和流的相关章节讨论它的细节。
标准输出流(cout)

定义的对象 cout 是 iostream 类的一个实例。cout 对象"连接"到标准输出设备,通常是显示屏。cout 是与流插入运算符 << 结合使用的

C++ 编译器根据要输出变量的数据类型,选择合适的流插入运算符来显示值。<< 运算符被重载来输出内置类型(整型、浮点型、double 型、字符串和指针)的数据项。
流插入运算符 << 在一个语句中可以多次使用

标准输入流(cin)

预定义的对象 cin 是 iostream 类的一个实例。cin 对象附属到标准输入设备,通常是键盘。cin 是与流提取运算符 >> 结合使用的

标准错误流(cerr)

预定义的对象 cerr 是 iostream 类的一个实例。cerr 对象附属到标准错误设备,通常也是显示屏,但是 cerr 对象是非缓冲的,且每个流插入到 cerr 都会立即输出。
cerr 也是与流插入运算符 << 结合使用的

标准日志流(clog)

定义的对象 clog 是 iostream 类的一个实例。clog 对象附属到标准错误设备,通常也是显示屏,但是 clog 对象是缓冲的。这意味着每个流插入到 clog 都会先存储在缓冲在,直到缓冲填满或者缓冲区刷新时才会输出。
clog 也是与流插入运算符 << 结合使用的

我们无法区分 cout、cerr 和 clog 的差异,但在编写和执行大型程序时,它们之间的差异就变得非常明显。所以良好的编程实践告诉我们,使用 cerr 流来显示错误消息,而其他的日志消息则使用 clog 流来输出

十五、C++ 数据结构

C/C++ 数组允许定义可存储相同类型数据项的变量,但是结构是 C++ 中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。
结构用于表示一条记录。

定义结构

为了定义结构,必须使用 struct 语句。struct 语句定义了一个包含多个成员的新的数据类型,struct 语句的格式如下:


struct type_name {
member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
} object_names;

  • type_name 是结构体类型的名称
  • member_type1 member_name1 是标准的变量定义,比如 int i; 或者 float f;
    或者其他有效的变量定义。
  • 在结构定义的末尾,最后一个分号之前,可以指定一个或多个结构变量,这是可选的
访问结构成员

为了访问结构的成员,使用成员访问运算符(.)。成员访问运算符是结构变量名称和我们要访问的结构成员之间的一个句号。

结构作为函数参数

可以把结构作为函数参数,传参方式与其他类型的变量或指针类似

实例


#include <iostream>
#include <cstring>
 
using namespace std;
 
// 声明一个结构体类型 Books 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   Books Book1;        // 定义结构体类型 Books 的变量 Book1
   Books Book2;        // 定义结构体类型 Books 的变量 Book2
 
   // Book1 详述
   strcpy( Book1.title, "C++ 教程");
   strcpy( Book1.author, "ycp"); 
   strcpy( Book1.subject, "编程语言");
   Book1.book_id = 12345;
 
   // Book2 详述
   strcpy( Book2.title, "CSS 教程");
   strcpy( Book2.author, "ycp");
   strcpy( Book2.subject, "前端技术");
   Book2.book_id = 12346;
 
   // 输出 Book1 信息
   cout << "第一本书标题 : " << Book1.title <<endl;
   cout << "第一本书作者 : " << Book1.author <<endl;
   cout << "第一本书类目 : " << Book1.subject <<endl;
   cout << "第一本书 ID : " << Book1.book_id <<endl;
 
   // 输出 Book2 信息
   cout << "第二本书标题 : " << Book2.title <<endl;
   cout << "第二本书作者 : " << Book2.author <<endl;
   cout << "第二本书类目 : " << Book2.subject <<endl;
   cout << "第二本书 ID : " << Book2.book_id <<endl;
 
   return 0;
}

结构作为函数参数

以把结构作为函数参数,传参方式与其他类型的变量或指针类似

实例


#include <iostream>
#include <cstring>
 
using namespace std;
void printBook( struct Books book );
 
// 声明一个结构体类型 Books 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   Books Book1;        // 定义结构体类型 Books 的变量 Book1
   Books Book2;        // 定义结构体类型 Books 的变量 Book2
 
    // Book1 详述
   strcpy( Book1.title, "C++ 教程");
   strcpy( Book1.author, "ycp"); 
   strcpy( Book1.subject, "编程语言");
   Book1.book_id = 12345;
 
   // Book2 详述
   strcpy( Book2.title, "CSS 教程");
   strcpy( Book2.author, "ycp");
   strcpy( Book2.subject, "前端技术");
   Book2.book_id = 12346;
 
   // 输出 Book1 信息
   printBook( Book1 );
 
   // 输出 Book2 信息
   printBook( Book2 );
 
   return 0;
}
void printBook( struct Books book )
{
   cout << "书标题 : " << book.title <<endl;
   cout << "书作者 : " << book.author <<endl;
   cout << "书类目 : " << book.subject <<endl;
   cout << "书 ID : " << book.book_id <<endl;
}

指向结构的指针

可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:

struct Books *struct_pointer;

现在,可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,把 & 运算符放在结构名称的前面,如下所示:

struct_pointer = &Book1;

为了使用指向该结构的指针访问结构的成员,必须使用 -> 运算符,如下所示:

struct_pointer->title;

重写上面的例子


#include <iostream>
#include <cstring>
 
using namespace std;
void printBook( struct Books *book );
 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   Books Book1;        // 定义结构体类型 Books 的变量 Book1
   Books Book2;        // 定义结构体类型 Books 的变量 Book2
 
    // Book1 详述
   strcpy( Book1.title, "C++ 教程");
   strcpy( Book1.author, "ycp"); 
   strcpy( Book1.subject, "编程语言");
   Book1.book_id = 12345;
 
   // Book2 详述
   strcpy( Book2.title, "CSS 教程");
   strcpy( Book2.author, "ycp");
   strcpy( Book2.subject, "前端技术");
   Book2.book_id = 12346;
 
   // 通过传 Book1 的地址来输出 Book1 信息
   printBook( &Book1 );
 
   // 通过传 Book2 的地址来输出 Book2 信息
   printBook( &Book2 );
 
   return 0;
}
// 该函数以结构指针作为参数
void printBook( struct Books *book )
{
   cout << "书标题  : " << book->title <<endl;
   cout << "书作者 : " << book->author <<endl;
   cout << "书类目 : " << book->subject <<endl;
   cout << "书 ID : " << book->book_id <<endl;
}

typedef 关键字

下面是一种更简单的定义结构的方式,可以为创建的类型取一个"别名"。例如:

typedef struct
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
}Books;

现在,可以直接使用 Books 来定义 Books 类型的变量,而不需要使用 struct 关键字。下面是实例:

Books Book1, Book2;

可以使用 typedef 关键字来定义非结构类型,如下所示:
typedef long int *pint32;

pint32 x, y, z;

x, y 和 z 都是指向长整型 long int 的指针。

打赏
文章版权声明:除非注明,否则均为彭超的博客原创文章,转载或复制请以超链接形式并注明出处。
上一篇:配置C++IDE 下一篇:C++面向对象
相关推荐

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

猜你喜欢